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Abstract: As an extension of non-negative matrix factorization (NMF), graph-regularized non-
negative matrix factorization (GNMF) has been widely applied in data mining and machine learning,
particularly for tasks such as clustering and feature selection. Traditional GNMF methods typ-
ically rely on predefined graph structures to guide the decomposition process, using fixed data
graphs and feature graphs to capture relationships between data points and features. However,
these fixed graphs may limit the model’s expressiveness. Additionally, many NMF variants face
challenges when dealing with complex data distributions and are vulnerable to noise and outliers.
To overcome these challenges, we propose a novel method called sparse feature-weighted double
Laplacian rank constraint non-negative matrix factorization (SFLRNMF), along with its extended
version, SFLRNMTF. These methods adaptively construct more accurate data similarity and feature
similarity graphs, while imposing rank constraints on the Laplacian matrices of these graphs. This
rank constraint ensures that the resulting matrix ranks reflect the true number of clusters, thereby
improving clustering performance. Moreover, we introduce a feature weighting matrix into the
original data matrix to reduce the influence of irrelevant features and apply an L2,1/2 norm sparsity
constraint in the basis matrix to encourage sparse representations. An orthogonal constraint is also
enforced on the coefficient matrix to ensure interpretability of the dimensionality reduction results.
In the extended model (SFLRNMTF), we introduce a double orthogonal constraint on the basis
matrix and coefficient matrix to enhance the uniqueness and interpretability of the decomposition,
thereby facilitating clearer clustering results for both rows and columns. However, enforcing double
orthogonal constraints can reduce approximation accuracy, especially with low-rank matrices, as it
restricts the model’s flexibility. To address this limitation, we introduce an additional factor matrix
R, which acts as an adaptive component that balances the trade-off between constraint enforcement
and approximation accuracy. This adjustment allows the model to achieve greater representational
flexibility, improving reconstruction accuracy while preserving the interpretability and clustering
clarity provided by the double orthogonality constraints. Consequently, the SFLRNMTF approach
becomes more robust in capturing data patterns and achieving high-quality clustering results in
complex datasets. We also propose an efficient alternating iterative update algorithm to optimize
the proposed model and provide a theoretical analysis of its performance. Clustering results on four
benchmark datasets demonstrate that our method outperforms competing approaches.

Keywords: non-negative matrix factorization; local structure learning; feature weighting; sparse
constraints; constrained Laplacian rank

MSC: 68Q99

1. Introduction

With the rapid development of information technology and artificial intelligence, the
scale and dimensionality of data are also increasing significantly. This vast amount of
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high-dimensional data pose great challenges to traditional machine learning and statis-
tical analysis. In the fields of data mining and machine learning, data representation [1]
is a fundamental and crucial task. It remains a fundamental and critical task, as it di-
rectly influences the performance and interpretability of subsequent models. Effective
low-dimensional data representation can handle massive high-dimensional data, reduce
redundant features in the original data, and reveal the latent structural information of
the data [2]. The primary objective of data representation is to effectively characterize the
original data using various techniques, thereby facilitating subsequent tasks like clustering
and classification. As a result, data representation plays a crucial role in a range of applica-
tions, including information retrieval, classification, hyperspectral image processing [3],
and information extraction [4–7].

Over the past few decades, to effectively handle high-dimensional data, researchers
have developed a variety of data representation methods. These methods include Principal
Component Analysis (PCA) [8], Manifold Learning [9–11], Linear Discriminant Analysis
(LDA) [12], Concept Factorization (CF) [13], Sparse Coding (SC) [14], non-negative ma-
trix factorization (NMF) [15,16] Deep Learning (DL) [17], and low-rank representation
(LRR) [18]. Among them, non-negative matrix factorization (NMF) has become one of the
most widely used data representation techniques [19] due to its excellent interpretability.
However, the classic NMF algorithm only imposes non-negativity constraints, which is not
sufficient to meet the diverse clustering needs. Therefore, to enhance its clustering perfor-
mance, researchers have embedded various additional constraints into the NMF algorithm.
For example, Gao et al. [20] proposed a sparse non-negative matrix factorization (SNMF)
algorithm, which enhances the algorithm’s learning capability by embedding sparsity con-
straints as a penalty term within the NMF framework. Similarly, Ding et al. [21] introduced
an Orthogonal Non-negative Matrix Tri-factorization (ONMTF) algorithm, which imposes
orthogonality constraints on both the basis matrix and coefficient matrix, aiming to produce
clearer and more interpretable clustering results during NMF decomposition. Although
these NMF variants improve clustering performance by imposing different constraints on
the classical NMF algorithm, they fail to consider the manifold structure in the data, which
is crucial for the manifold structure of clustering data. To explore the geometric structure
of data manifolds and feature manifolds, researchers encode the geometric information of
data and feature spaces by constructing similarity graphs and embed graph regularization
into the original NMF to reveal the intrinsic geometric structure of the data.

Consequently, various graph-regularized NMF variants have been proposed. For
example, Cai et al. [22] introduced graph-regularized NMF (GNMF), which learns the
local manifold structure of the data space by constructing a similarity graph. However,
GNMF only considers the similarity in the data space and does not address the feature
space. For this purpose, Shang et al. [23] proposed dual regularized NMF (DNMF) by
constructing two similarity graphs to explore the geometric structure information in both
the data and feature spaces simultaneously. Inspired by Shang et al. [23], Sun et al. [24]
introduced sparse dual graph-regularized NMF (SDGNMF), which not only incorporates
label information into the graph regularization but also imposes sparsity constraints on the
basis matrix. To prevent misalignment between the image and basis vectors and further
enhance the algorithm’s discriminative ability, Li et al. [25] proposed semi-supervised dual
orthogonally constrained dual graph-regularized NMF (SDGNMF-BO). This method inte-
grates dual orthogonality constraints and dual graph regularization into a semi-supervised
NMF framework, further enhancing the learning capability in the subspace. To maximize
the sparsity of the learned coefficient matrix, Li et al. [26] introduced semi-supervised graph
and local coordinate regularized NMF. By embedding local coordinate constraints into a
semi-supervised NMF framework with graph regularization, the sparsity of the coefficient
matrix is enhanced. Inspired by Li et al. [26] and considering that matrix factorization
may have multiple solutions, Wang et al. [27] proposed locally orthogonally constrained
semi-supervised dual graph-regularized NMF (LOSDNMF). This method integrates dual
graph regularization, local coordinate constraints, and dual orthogonality constraints into
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a semi-supervised NMF framework, effectively enhancing the sparsity and discrimina-
tive power of data representation. However, although graph regularization methods are
generally superior to many other approaches, these methods often rely on the K-nearest
neighbors (KNN) approach to construct the graph structure. However, this construction can
interfere with the matrix factorization process, potentially leading to suboptimal clustering
results. To explore the nonlinear structure of data and construct a similarity graph with
an optimal block-diagonal structure, Xu et al. [28] proposed an explicit data-driven kernel
learning strategy. This strategy directly learns the kernel through the self-representation
of the data, simultaneously enabling adaptive weighting. Based on this kernel, the local
manifold structure of the data can be preserved in the nonlinear space via a kernel-based
local manifold term, facilitating the construction of a graph structure with an optimal
block-diagonal form. Recognizing that multi-view clustering can enhance clustering per-
formance by effectively integrating complementary information from different views, Xu
et al. [29] further proposed a novel multi-view clustering algorithm that adaptively con-
structs a kernel matrix without requiring a predefined kernel function. Inspired by the
aforementioned research, constructing adaptive graph structures has also gained increasing
attention in non-negative matrix factorization (NMF). For instance, the NMF with Adaptive
Neighbors (NMFAN) method [30] introduces an adaptive graph mechanism to achieve
simultaneous optimization of matrix factorization and similarity learning. This method
balances the interactions between these two sub-tasks, allowing each sub-task to iteratively
optimize based on the results of the other, thereby ensuring a more accurate construction
of the similarity matrix in the data graph. Additionally, Shu et al. [31] proposed a new
data representation method (RCNMF) by imposing a rank constraint on the Laplacian
matrix of the learned graph to ensure that the connected components precisely match the
sample categories. On the other hand, with the continuous development of non-negative
matrix factorization (NMF), an increasing number of constraints have been introduced.
However, excessive constraints may lead to unreliable solutions. Therefore, to address the
issue of limited degrees of freedom caused by too many constraints, some researchers have
introduced a third decomposition factor, denoted as R, within the NMF framework. This
additional factor, serving as a scaling function, not only provides extra degrees of freedom
for the factor matrices X, U, and V, but also enhances the flexibility of the decomposition
process. For example, Tang et al. [32] proposed a new three-factor matrix decomposition
model. By introducing dual graph regularization and dual orthogonality constraints into
NMF, this model not only explores the geometric properties of data and feature manifolds
but also ensures the orthogonality of the factor matrices.

Inspired by the aforementioned algorithms, we have not fixed the input feature map
and input data graph related to the affinity matrix in our model. Instead, we learn new data
similarity matrix D and feature similarity matrix A based on the initial data similarity matrix
W and the initial feature similarity matrix S. These new optimal similarity graphs are more
suitable for clustering tasks. Moreover, we have imposed rank constraints on the Laplacian
graphs of these two new similarity matrices to ensure that the number of connected
components is consistent with the number of sample categories. Furthermore, inspired
by recent research on orthogonal constraints by Ding et al. [21] and sparse constraints by
Luo et al. [33], we have introduced sparsity and double orthogonal constraints within the
non-negative matrix factorization framework with dual Laplacian rank constraints. These
double orthogonal constraints not only address the issues of slow optimization and high
computational complexity in existing NMF models but also prevent mismatches between
images and base vectors. Thus, this enhancement effectively improves the discriminative
and exclusive nature of clustering.

Therefore, we propose a novel non-negative matrix factorization algorithm called
sparse feature-weighted dual Laplacian rank-constrained non-negative matrix factorization
(SFLRNMF), along with its extended version, sparse feature-weighted dual Laplacian
rank-constrained non-negative tri-factor matrix factorization (SFLRNMTF). Our main
contributions include the following:
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(1) A novel learning mechanism, dual Laplacian rank-constrained non-negative matrix
factorization (SFLRNMF), has been proposed. This mechanism is capable of learning
the optimal feature similarity graph and data similarity graph, and rank constraints
are applied to the Laplacian matrices of both graphs to construct an optimal dual
graph regularizer. Additionally, a weight matrix has been constructed to explore
the attributes of the original data and the diversity of the samples. Furthermore, an
L2,1/2-norm sparsity constraint has been imposed on the basis matrix to promote
sparsity, simplify computation, and enhance the model’s local learning capabilities
and robustness.

(2) Based on SFLRNMF, the dual Laplacian rank-constrained non-negative matrix tri-
factorization (SFLRNMTF) model is proposed. Specially, orthogonal constraints are
imposed on both the coefficient matrix and the basis matrix to ensure that each data
point has a unique basis vector in the feature space, which allows one to enhance
the discriminative ability of clustering. Additionally, excessive constraints may lead
to too few degrees of freedom, which results in unreliable solutions during factor
decomposition. Therefore, factor R has been introduced to ensure the accuracy of the
factor decomposition.

(3) Corresponding iterative update optimization schemes have been proposed, and
convergence proofs for the two algorithms have been provided. Furthermore, the
effectiveness of these two models has been validated by conducting experiments on
benchmark datasets and comparing the results with several of the most advanced
clustering methods.

The rest of the paper is structured as follows: In Section 2, we introduce the basic
principles of standard NMF and its variants. In Section 3, the novel SFLRNMF algorithm is
presented, and its convergence is provided theoretically. Section 4 introduces the extended
version of SFLRNMF and provides the convergence of the optimization process. In Section 5,
we conduct numerical experiments to demonstrate the efficiency of our two methods. In
Section 6, we summarize the paper and discuss future work.

2. Related Works
2.1. NMF

NMF aims to approximate the original high-dimensional data matrix x by decompos-
ing it into two lower-dimensional matrices u and v. Some of the notation used in NMF is
shown in Table 1.

Given a non-negative dataset X = [x1, x2, · · · xn] ∈ Rm×n, U ∈ Pm×r, V ∈ Rn×r, and
X ≈ UVT . Here, r ≪ min(m, n), where U represents the basis matrix in the data space,
and V represents the coefficient matrix in the feature space. The objective function of this
problem is as follows:

J1=
∥∥X−UVT

∥∥2
F =

p
∑

i=1

n
∑

j=1

(
xij −

r
∑

l=1
uilvjl

)2

s.t. U ≥ 0, V ≥ 0
(1)

In the formula, ∥·∥F represents the Frobenius norm. The objective function J1 in the
above Formula (1) is non-convex with respect to the joint variables (U, V). To make J1 a
convex function, it is necessary to fix one of the variables (U, V). Therefore, the objective
function can be solved iteratively using an alternating approach. To effectively solve the
objective function of NMF, Lee et al. [15] proposed the well-known multiplicative update
method, which allows the objective function to be solved using a simple multiplicative
iterative update approach. The update rules for Formula (1) are given below:

uij ← uij
(XV)ij

(UVT)ij
(2)
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vij ← vij

(
XTU

)
ij

(VUTU)ij
(3)

Here, i ∈ {1, . . ., m}, l ∈ {1, . . ., r} and j ∈ {1, . . ., n}.
At the beginning of the iterative process, we randomly initialize the basis matrix U

and the coefficient matrix V and then update them according to the iterative update rules
in Formulas (2) and (3) until the final condition is satisfied.

Table 1. List of notation.

Notation Notation Description

X ∈ Rm×n Data matrix
T ∈ Rm×m Feature-weighted matrix
R ∈ Rc×c Diagonal scaling matrix
A ∈ Rn×n Initial data affinity matrix
S ∈ Rn×n Data affinity matrix
D ∈ Rm×m Initial feature affinity matrix
W ∈ Rm×m Feature affinity matrix
U ∈ Rm×c Basis matrix
V ∈ Rn×c Coefficient matrix
I Unit matrix
1 Vector with all elements being 1
LS ∈ Rn×n Data Laplacian matrix
LW ∈ Rm×m Feature Laplacian matrix
DS ∈ Rn×n Data graph degree matrix
DW ∈ Rm×m Feature graph degree matrix
α Dual graph parameter
β Orthogonal parameter
θ Sparse parameter
m The number of data dimensions
n The number of data points
c The number of data clusters
k The number of nearest data points

2.2. GNMF

Cai et al. [22]. developed a graph-regularized non-negative matrix factorization
(GNMF) for data representation. This model constructs an affinity graph to describe the
manifold structure embedded in a high-dimensional ambient space, aiming to optimize the
problem. The objective function of GNMF is as follows:

OGNMF =
∥∥X−UVT

∥∥2
F + λTr

(
VT LV

)
s.t. U ≥ 0, V ≥ 0

(4)

Here, L is the Laplacian matrix in the data space. For the above Equation (4), the
following update rules are provided:

uij ← uij
(XV)ij

(UVTV)ij
(5)

vij ← vij

(
XTU + λWV

)
ij

(VUTU + λDV)ij
(6)

2.3. NMFAN

Huang et al. [30] pay special attention to the local connectivity of data points in
their adaptive graph-regularized non-negative matrix factorization (NMFAN) method.
They strive to construct an ideal similarity matrix aimed at achieving effective neighbor
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allocation. Based on the assumption that data points closer in distance are more likely to
become neighbors, this method selects the best neighbors for each data point to build the
similarity matrix. By imposing constraints on this matrix, the neighbor allocation process
becomes adaptive. The objective function of NMFAN is as follows:

ONMFAN =
∥∥X−UVT

∥∥2
F + λTr

(
VT LSV

)
+

n
∑

i,j=1

(∥∥xi−xj
∥∥2

2Sij + γS2
ij

)
s.t. sT

i 1 = 1, 0 ≤ Si ≤ 1, U ≥ 0, V ≥ 0
(7)

Based on the above objective function, the iterative update rules for Formula (7) are
as follows:

uij ← uij
(XV)ij

(UVTV)ij
(8)

vij ← vij

(
XTU + λWSV

)
ij

(VUTU + λDSV)ij
(9)

For the update of S in Equation (7), the following problem needs to be solved:

min
sT

i 1=1, 0≤Si≤1

∥∥∥∥si +
1

2γ
di
∥∥∥∥2

2
(10)

Here, di is the j-th column element of dij, specifically as follows:

dij =
∥∥xi−xj

∥∥2
2 +

λ

2µ

∥∥vi−vj
∥∥2

2 (11)

For the update of γ in Equation (7), the following problem needs to be solved:

γ =
1
n∑n

i=1

(
k
2
∥xi−xk+1∥2

2 −
1
2∑k

j=1

∥∥xi−xj
∥∥2

2

)
(12)

2.4. DNMF

Considering that both the observed data and features are situated on a low-dimensional
manifold, Shang et al. [23] proposed the dual graph-regularized non-negative matrix fac-
torization (DNMF). This model constructs dual affinity graphs to simultaneously mine
the geometric structural information contained in the data points and features, aiming to
optimize the problem. The objective function of DNMF is as follows:

ODNMF =
∥∥X−UVT

∥∥2
F + λTr

(
VT LVV

)
+ µTr

(
UT LUU

)
s.t. U ≥ 0, V ≥ 0

(13)

Based on the above objective function, the iterative update rules for Formula (13) are
as follows:

uij ← uij

(
XV + µWUU

)
ij

(UVTV + µDUU)ij
(14)

vij ← vij

(
XTU + λWVV

)
ij

(VUTU + λDVV)ij
(15)

2.5. SDGNMF-BO

Inspired by co-clustering algorithms, Li et al. [25] introduced dual graph regularization
into the semi-supervised non-negative matrix factorization (NMF) framework and pro-
posed the semi-supervised dual orthogonal constrained dual graph- regularized subspace
clustering NMF method (SDGNMF-BO). This method aims to more effectively utilize the
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latent structures and class information in the data. To enhance the model’s recognition ca-
pability, they imposed soft orthogonal constraints on the decomposed basis and coefficient
matrices. The objective function of SDGNMF-BO is as follows:

OSDGNMF-BO =
∥∥X− HATCT

∥∥2
F + α

[
Tr
(

HT LH H
)
+ Tr

(
ATCT LACCA

)]
+β
[
Tr
(

HT H − I
)
+ Tr

(
ATCTCA− I

)]
s.t. HT H = I, ATCTCA = I, hij ≥ 0, cij ≥ 0

(16)

Based on the above objective function, the iterative update rules for Formula (16) are
as follows:

hij ← hij

(
XCA + αWH H

)
ij

(ATCTCA + αDH H + βH)ij
(17)

aij ← aij

(
CTXT H + αCTWACCA

)
ij

(CTCAHT H + αCT DACCA + βCTCA)ij
(18)

cij ← cij

(
XT HAT + αWACCA

)
ij

(CAHT HAT + αDACCAAT + βCAAT)ij
(19)

3. The Presented Model
3.1. The Motivation of the Proposed Method

Inspired by Local Linear Embedding (LLE) [10] and Laplacian Eigenmaps (LE) [11],
researchers have developed several graph-regularized NMF clustering algorithms. How-
ever, the clustering performance of these algorithms highly depends on the quality of
the graph model. Therefore, we propose automatically adjusting the weights of a given
similarity matrix to learn the optimal similarity matrix. Specifically, our goal is to learn
the new data similarity matrix D and feature similarity matrix A based on the initial data
similarity matrix W and the initial feature similarity matrix S, thus constructing an optimal
graph more suited for clustering tasks. Figure 1 shows the process of constructing this
optimal graph. We use traditional weighting methods, such as 0–1 weighting, heat kernel
weighting, or probabilistic neighborhood methods, to construct nearest neighbor graphs
related to the data similarity matrix W and feature similarity matrix S. Then, we impose
rank constraints on the Laplacian matrix of the learned similarity matrices and iteratively
update the similarity matrices A and D.
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Through the analysis above, in this section, we propose a new NMF model, namely
sparse feature-weighted dual graph Laplacian rank-constrained non-negative matrix fac-
torization (SFLRNMF), designed for graph-based clustering.

3.2. Sparse Constraints

Sparse constraints involve using appropriate sparse models to represent sparse data.
Introducing sparse constraints into non-negative matrix factorization (NMF) combines
the advantages of NMF and sparse representation, thus enhancing the effectiveness of
NMF methods. In particular, imposing sparse constraints on the basis matrix U when
decomposing the original matrix X has been proven to be a very successful and practical
strategy. When each row of the basis matrix is sparse, fewer basis elements are needed
to represent the original matrix, which greatly aids in data recovery. Therefore, sparse
constraints have received widespread attention in recent years. Xu et al.’s [34] research
shows that the sparse effect of the Lp-norm is better when p = 1/2, making the Lp-norm-
based sparse constraint an increasingly favored condition among researchers. We first use
the Lp-norm to impose sparse constraints on the basis matrix U with the specific method
as follows:

∥U∥2,1/2 =
(
∑n

i=1∥Ui∥1/2
2

)2
(20)

Imposing Lp-norm sparse constraints on the basis matrix enhances the algorithm’s
robustness, local learning capability, and clustering performance, while making the basis
matrix U sparser and simplifying the computational process.

3.3. Bi-Orthogonal Constraints

Ding et al. [21] proposed that in non-negative matrix factorization, satisfying X ≈ UVT,
for a given solution (U, V), there also exists another solution (UA, VB) where ABT = I
and UA ≥ 0, VB ≥ 0. To avoid such erroneous solutions, orthogonal constraints should
be applied to the basis matrix after decomposition, such that UUT = I. Additionally,
to differentiate various features and ensure that each feature vector points in distinct
directions, which facilitates clearer and more distinguishable clustering in the sample
space, orthogonal constraints should also be applied to the coefficient matrix, such that
VVT = I. Imposing orthogonal constraints in both the feature and sample spaces helps to
distinguish different features and samples more prominently. This significantly enhances
the performance of clustering algorithms, making different data groups more distinct
and independent.

3.4. Feature Weighting

In this section, we integrate a feature weighting mechanism into non-negative matrix
factorization (NMF) to better differentiate the importance of features in the original matrix,
thereby improving the model’s performance and interpretability. By introducing a feature
weighting matrix T, the objective function can be summarized as follows:

O =
∥∥∥TX−UVT

∥∥∥2

F

s.t.V ≥ 0, U ≥ 0, Ti = diag(ti), ti ≥ 0, ∑m
i=1 ti = 1

(21)

3.5. Models of Proposed Methods

Our strategy is to construct an optimal dual graph regularizer based on the initial data
similarity matrix and the initial feature similarity matrix, both of which block diagonal
matrices. To establish this objective, we begin with the following theorem.
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Theorem 1 ([35]). If the affinity matrix is non-negative, the Laplacian matrix Lw = Dw −(
WT + W

)
/2, where the i-th element is ∑j

(
wij + wji

)
/2. The degree matrix Dw ∈ Rn×n is

defined as a diagonal matrix with the following important properties [36,37], where W is the initial
data similarity graph.

Theorem 1 indicates that given an affinity matrix W, if the rank of the Laplacian matrix
is equal to n-k, it is an ideal graph. Therefore, for a given initial data affinity matrix W
and feature affinity matrix S, we can learn the corresponding data similarity matrix D and
feature similarity matrix A. The Laplacian matrices corresponding to these two similarity
matrices are DS −

(
ST + S

)
/2 and LW = DW −

(
WT + W

)
/2, respectively.

By applying rank constraints to the two Laplacian matrices, namely rank(LS) = n− k
and rank(LS) = m− k, and using the Frobenius norm to measure the approximation error
between the initial affinity matrices W and S and the learned similarity matrices D and A,
respectively, the constrained Laplacian rank for graph-based clustering can be formulated
as the following problem:

O = ∥S− A∥2
F + ∥W − D∥2

F

s.t. ∑j sij = 1, sij ≥ 0∑j wij = 1, wij ≥ 0, rank(LS) = n− k, rank(Lw) = m− k
(22)

The above objective function, due to DS depending on S and DW depending on W,
along with the constraints rank(LS) = n− k, rank(Lw) = m− k, is evidently a complex
nonlinear consrained problem. Next, we will reformulate this problem using Laplacian
rank constraints.

Assume σi(LW) represents the i-th smallest eigenvalue of LW , and σi(LS) represents
the i-th smallest eigenvalue of LS. Additionally, since LW and LS are both semi-definite
matrices, their eigenvalues σi(LS) and σi(LW) are non-negative. It can be seen that for a
sufficiently large value of λ, problem (22) is equivalent to the following problem:

min
S,W

J = ∥S− A∥2
F + ∥W − D∥2

F + 2α

(
k
∑

i=1
σi(LS) +

k
∑

i=1
σi(LW)

)
s.t. ∑j sij = 1, sij ≥ 0∑j wij = 1, wij ≥ 0

(23)

Therefore, when λ is sufficiently large, the optimal solutions S and W to Equation (25)
will make ∑k

i=1 σi(LS) + ∑k
i=1 σi(LW) equal to zero, thereby satisfying the two rank con-

straints in problem (22). According to the Ky Fan theorem [38], the following equality can
be obtained:

∑k
i=1 σi(LS) = min

F∈Rn×k
Tr
(

FT LSF
)

, ∑k
i=1 σi(LW) = min

F∈Rn×k
Tr
(

FT LW F
)

(24)

Further, expression (23) can be rewritten in the following form:

min
S,W

J = ∥S− A∥2
F + ∥W − D∥2

F + α
(
Tr
(
VT LSV

)
+ Tr

(
UT LWU

))
S1 = 1, W1 = 1, S ∈ Rn×n, W ∈ Rm×m

(25)

It is worth noting that 1 is a vector with all elements equal to 1. Next, we construct the
optimal dual graph regularization term within the feature-weighted NMF framework. The
objective function is written in the following form:

min
S,W

J = ∥S− A∥2
F + ∥W − D∥2

F + α
(
Tr
(
VT LSV

)
+ Tr

(
UT LWU

))
+
∥∥TX−UVT

∥∥2
F

s.t.S1 = 1, W1 = 1, S ≥ 0, W ≥ 0, S ∈ Rn×n, W ∈ Rm×m, T = diag(t), ti ≥ 0,

∑m
i=1 ti = 1, U ≥ 0, V ≥ 0

(26)

Considering the sparsity constraints and orthogonality constraints in Equation (26),
the objective function of the proposed SFLRNMF framework can be summarized as follows:
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min
S,W

J = ∥S− A∥2
F + ∥W − D∥2

F + α
(
Tr
(
VT LSV

)
+ Tr

(
UT LWU

))
+
∥∥TX−UVT

∥∥2
F + θ∥U∥1/2

2,1/2

s.t. VTV = I, S1 = 1, W1 = 1, S ≥ 0, W ≥ 0, S ∈ Rn×n, W ∈ Rm×m, Ti = diag(ti), ti ≥ 0,
∑m

i=1 ti = 1, U ≥ 0, V ≥ 0

(27)

Here, α and θ are non-negative and balance the weight of the first reconstruction error
term and the other terms, with θ being the sparsity parameter. T is a diagonal matrix,
T ∈ Rm×m, which assigns a weight to each feature of the original matrix X.

3.6. An Efficient Iterative Update Rule for Solving the Proposed Model

To address this non-convex problem, by alternately optimizing the following vari-
ables, we can transform the Lagrangian function of the objective function (27) into the
following equations:

min
S,W

J = ∥S− A∥2
F + ∥W − D∥2

F + α
(
Tr
(
VT LSV

)
+ Tr

(
UT LWU

))
+ Tr

(
TXXTTT

)
− 2Tr

(
XTTTUVT

)
+Tr

(
VUTUVT

)
+ βTr

(
VTV − I

)
+ 4θTr

(
UTQU

) (28)

Here, Q ∈ Rm×m, and Q =
[
qij

]
is a diagonal matrix. We can compute the diagonal

element of its i-th row as follows:

qij =
1

4max
(
∥ui∥3/2

2 , ε
) (29)

Here, ε is a sufficiently small constant to avoid overflow in the above equation. To
iteratively update the basis matrix U, the coefficient matrix V, and the feature weighting
matrix T, we should take the partial derivatives of J:

∂J
∂U

= 2αLwU − 2TXV + 2UVTV + 8θQU (30)

∂J
∂V

= 2αLsV − 2XTTTU + 2VUTU + 2βV (31)

∂J
∂T

= 2TXXT − 2UVTXT (32)

According to the Karush–Kuhn–Tucker (KKT) conditions, the iterative updates for the
basis matrix U, the coefficient matrix V, and the feature weighting matrix T are as follows:

uij ← uij

(
TXV + αWWU

)
ij

(αDWU + UVTV + 4θQU)ij
(33)

vij ← vij

(
XTTTU + αWSV

)
ij

(VUTU + βV + αDSV)ij
(34)

tij ← tij

(
UVTXT

)
ij(

TXXT
)

ij

(35)

To obtain the updates for the new data graph S and the new feature graph W, we use
alternating optimization. First, we fix U, V, T, and W, then update S:

L1 = ∥S− A∥2
F + αTr

(
VT LSV

)
S1 = 1, S ≥ 0, S ∈ Rn×n

(36)
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Equation (36) is equivalent to optimizing the following problem:

min
∑
j

sij=1,sij≥0
∑i,j

(
si,j − ai,j

)2
+α∑i,j

∥∥vi − vj
∥∥2

2si,j (37)

Note that for different i, the above problem is independent, so we can solve the above
problem by solving for each i separately.

min
∑j sij=1,sij≥0

∑i

(
si,j − ai,j

)2
+α∑i

∥∥vi − vj
∥∥2

2si,j (38)

where definition fi,j =
∥∥vi − vj

∥∥2
2, and the j-th column element of fi,j is denoted by fi

(similarly for si and ai). Problem (35) can be written in vector form as follows:

∑sT
i =1,si≥0

∥∥∥∥si −
(

ai −
λ

2
fi

)∥∥∥∥2

2
(39)

Equation (39) can be solved using the simplex sparse learning model proposed by
Huang et al. [39].

Next, update matrix W; similarly, we can update W by fixing matrices U, V, T, and S
as follows:

L2 = ∥W − D∥2
F + αTr

(
UT LSU

)
s.t. W1 = 1, W ≥ 0, W ∈ Rm×m

(40)

Similarly, optimizing (40) is equivalent to optimizing the following problem:

min
∑j wij=1,wij≥0

∑i,j

(
wi,j − di,j

)2
+α∑i,j

∥∥ui − uj
∥∥2

2wi,j (41)

For each row of wi and di, we have

min
∑j wij=1,wij≥0

∑i

(
wi,j − di,j

)2
+α∑i

∥∥ui − uj
∥∥2

2wi,j (42)

Similarly, we define gi,j =
∥∥ui − uj

∥∥2
2, and the j-th column element of gi,j is denoted by

gi (similarly for wi and di). Problem (39) can be written in vector form as follows:

∑wT
i =1,wi≥0

∥∥∥∥wi −
(

di −
λ

2
gi

)∥∥∥∥2

2
(43)

For solving Equation (43), the simplex sparse learning model proposed by Huang
et al. [39] is used.

The optimization process of the SFLRNMF algorithm is shown in Algorithm 1.
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Algorithm 1 The process of SFLRNMF algorithm

Input: Initial Data similarity matrix S and Characteristic similarity matrix W, parameter
α, θ, λ; Data matrix X = [x1, x2, · · · , xn]. the neighbor number k, and the maximum iteration
number Niter.

Output: fundamental matrix U, coefficient matrix V
Initialization: S← S0, W←W0, LS = Laplace(S), LW = Laplace(W)
Repeat: Fixing S and W, update U, V and T

Update U by Equation (33)
Update V by Equation (34)
Update T by Equation (35)
Fixing U, V and T, update S and W
Update S by Equation (39)
Update W by Equation (43)

Compute LS by LS = DS −
(

ST + S
)

/2, LW by LW = DW −
(

WT + W
)

/2
Until: convergence

3.7. Convergence Analysis of the SFLRNMF Algorithm

In this section, we analyze the convergence of SFLRNMF and prove that the objective
function in Equation (27) is monotonically decreasing under the iterative update rules (33)
to (35).

Firstly, we analyze the convergence of the iterative update rule in Equation (34).

Definition 1. Provided the following conditions are met [40]: G(x, x′) ≥ F(x), G(x, x) = F(x),
where G(x, x′) is an auxiliary function of F(x). Assuming that the (t + 1)-th iteration update rule
is as follows:

xt+1 = argmin
x

G
(
x, xt) (44)

Therefore, we can prove that
(
xt+1) ≤ G

(
xt+1, xt) ≤ G(xt, xt) = F(xt), which implies

that F(x) converges.

Lemma 1.

G
(

vij, vt
ij

)
= Fij

(
vt

ij

)
+ F′ij

(
vt

ij

)(
vij − vt

ij

)
+

(
αDsV + VUTU + βV

)
ij

vt
ij

(
vij − vt

ij

)2
(45)

The above equation is an auxiliary function of Fij
(
vij
)
, where F(v) =

∥∥∥TX−UVT
∥∥∥2

F
+

αTr
(

VTLsV
)
+ β

(
VTV− I

)
.

Proof. Given that the first and second derivatives of Fij
(
vij
)

are F′ij(v) = (2αLsV−
2XTTTU + 2VUTU + 2βV)ij and F′′ij (v) = 2α(Ls)ii + 2

(
UTU

)
jj
+ 2β, we can derive the

Taylor expansion of Fij
(
vij
)

as follows:

F
(
vij
)
= Fij

(
vt

ij

)
+ F’

ij

(
vt

ij

)(
vij − vt

ij

)
+

[(
UTU

)
jj
+ α(Ls)ii + β

](
vij − vt

ij

)2
(46)

Since we have
(

VUTU
)

ij
= ∑k

r=1 vt
ir

(
UTU

)
rj
≥ vt

ij

(
UTU

)
jj

(αDsV)ij = α∑n
r=1 Ds

irv
t
rj ≥ α(Ds −Ws)iiv

t
ij = α(Ls)iiv

t
ij

(47)
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By simultaneously solving Equations (44) and (45), we obtain vt+1
ij as the local mini-

mum of Equation (45), and G
(

vt+1
ij , vt

ij

)
as the corresponding local minimum value.

Given the equation vt+1
ij = vt

ij −
vt

ijF
′
ij

(
vt

ij

)
2(αDsV+VUTU+βV)ij

= vt
ij

(XTTTU+αWsV)ij

(VUTU+βV+αDsV)ij
, we have

(αDsV+VUTU+βV)ij
vt

ij
≥ α(Ls)ii +

(
UTU

)
jj
+ β. Therefore, we can derive that G

(
vij, vt

ij

)
≥

F
(
vij
)
, Since G

(
vij, vt

ij

)
is an auxiliary function of Fij

(
vij
)
, F
(
vij
)

is monotonically decreas-
ing.

In the same method, we can prove that under the iterative update rule (35), Fij
(
tij
)

is
monotonically decreasing. □

Lemma 2 ([41]).

∑m
i=1

∥∥∥gt+1
i

∥∥∥1/2

2
−

∥∥∥gt+1
i

∥∥∥2

2

4
∥∥gt

i

∥∥3/2
2

 ≤∑m
i=1

(∥∥gt
i
∥∥1/2

2 −
∥∥gt

i

∥∥2
2

4
∥∥gt

i

∥∥3/2
2

)
(48)

Proof. According to Lemma 2, we have the following equation:

∑m
i=1

∥∥∥ut+1
i

∥∥∥1/2

2
−

∥∥∥ut+1
i

∥∥∥2

2

4
∥∥ut

i

∥∥3/2
2

 ≤∑m
i=1

(∥∥ut
i
∥∥1/2

2 −
∥∥ut

i

∥∥2
2

4
∥∥ut

i

∥∥3/2
2

)
(49)

In the i-th iteration, we fix Q as QT to solve for Ut+1, Vt+1, and Tt+1. We define the
following function:

L(U, V, T) = α
[
Tr
(

VTLsV
)
+ Tr

(
UTLwU

)]
+ Tr

(
TXXTTT

)
− 2Tr

(
XTTTUVT

)
+ Tr

(
VUTUVT

)
+βTr

(
VTV− I

) (50)

Given that ∥u∥1/2
2,1/2 = ∑m

i=1∥ui∥1/2
2 , we obtain the following inequality:

LTt+1 + θ∑m
i=1
∥ut+1

i ∥
2
2

4∥ut
i∥

3/2
2

= LTt+1 + θ
∥∥ut+1

∥∥1/2
2,1/2 + θ∑m

i=1

(
∥ut+1

i ∥
2
2

4∥ut
i∥

3/2
2

−
∥∥∥ut+1

i

∥∥∥1/2

2

)

≤ LTt + θ
m
∑

i=1

∥ut
i∥

2
2

4∥ut
i∥

3
2
2

=LTt + θ∥ut∥
1
2
2,1/2 + θ

m
∑

i=1

(
∥ut

i∥
2
2

4∥ut
i∥

3/2
2

−
∥∥ut

i

∥∥1/2
2

) (51)

Combining inequalities (48) and (51), we obtain the following inequality: Lt+1 +

θ
∥∥∥Ut+1

∥∥∥1/2

2,1/2
≤ Lt + θ

∥∥Ut∥∥1/2
2,1/2. Thus, Fij

(
uij
)

is monotonically decreasing under the

updated Equation (33). Based on the above convergence analysis, we can conclude that
the objective function (27) is monotonically decreasing under the iterative update rules
(33)–(35), (39), and (43). □

4. Sparse Feature-Weighted Double Laplace Rank-Constrained NMTF Model

In this section, we propose a novel extension of SFLRNMF, called sparse feature-
weighted dual Laplacian rank-constrained non-negative matrix tri-factorization (SFLRN-
MTF). In SFLRNMTF, we introduce an additional factor R and dual orthogonality con-
straints to SFLRNMF. This not only enhances the accuracy of the low-rank representation
but also ensures a more robust model by incorporating different scales of X, U, and V.
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4.1. SFLRNMF with Three-Factor (SFLRNMTF)

To apply the idea of dual orthogonality constraints to SFLRNMF, we incorporate an
additional factor R and dual orthogonality constraints into Equation (27) for SFLRNMF, as
shown below:

min
S,W

JT = ∥S− A∥2
F + ∥W − D∥2

F + α
(
Tr
(
VT LSV

)
+ Tr

(
UT LWU

))
+
∥∥TX−URVT

∥∥2
F + θ∥U∥1/2

2,1/2

s.t. UTU = I, VTV = I, S1 = 1, W1 = 1, S ≥ 0, W ≥ 0, S ∈ Rn×n, W ∈ Rm×m,

Ti = diag(t), ti ≥ 0, ∑m
i=1 ti = 1, U ≥ 0, V ≥ 0

(52)

Here, R ∈ Rc×c is a diagonal scaling matrix, and T has the same meaning as in
Equation (27).

4.2. An Efficient Iterative Update Rule for Solving Model (SFLRNMTF)

We rewrite the objective function (51) of the SFLRNMTF model as a Lagrangian
function, as shown below:

JT = ∥S− A∥2
F + ∥W − D∥2

F + α
(
Tr
(
VT LSV

)
+ Tr

(
UT LWU

))
+ Tr

(
TXXTTT

)
−

2Tr
(

XTTTURVT
)
+ Tr

(
VRTUTURVT

)
+ β

[
Tr
(
UTU − I

)
+ Tr

(
VTV − I

)]
+ 4θTr

(
UTQU

) (53)

To update the matrices U, V, R, and T, first, we compute the partial derivatives of the
Lagrangian function JT with respect to different variables, as shown below:

∂JT
∂U

= 2αLwU − 2TXVVRT + 2URVTVRT + 2βU + 8θQU (54)

∂JT
∂V

= 2αLsV − 2XTTTUR + 2VRTUTUR + 2βV (55)

∂JT
∂R

= −2UTTXV + 2UTURVTV (56)

∂JT
∂T

= 2TXXT − 2URVTXT (57)

Based on the Karush–Kuhn–Tucker (KKT) conditions [39], the iterative updates for
matrices U, V, R, and T are as follows:

uij ← uij

(
TXVRT + αWwU

)
ij(

αDwV + URVTVRT + βU + 4θQU
)

ij

(58)

vij ← vij

(X TTTUR + αWsV
)

ij(
αDSV + VRTUTUR + βV

)
ij

(59)

rij ← rij

(
UTTXV

)
ij

(UTURVTV)ij
(60)

tij ← tij

(
URVTXT

)
ij(

TXXT
)

ij

(61)

The optimization process for SFLRNMTF is shown in Algorithm 2.
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Algorithm 2 The process of SFLRNMTF algorithm

Input: Initial Data similarity matrix S and Characteristic similarity matrix W, parameter α, θ, λ;
Data matrix X = [x1, x2, · · · , xn]. the neighbor number k, and the maximum iteration number
Niter.
Output: fundamental matrix U, coefficient matrix V
Initialization: S← S0, W←W0, LS = Laplace(S), LW = Laplace(W)
Repeat: Fixing S and W, update U, V and T

Update U by Equation (58)
Update V by Equation (59)
Update R by Equation (60)
Update T by Equation (61)
Fixing U, V and T, update S and W
Update S by Equation (39)
Update W by Equation (43)

Compute LS by LS = DS −
(

ST + S
)

/2, LW by LW = DW −
(

WT + W
)

/2
Until: convergence

4.3. Convergence Analysis of the SFLRNMTF Algorithm

In this section, we theoretically prove the convergence of SFLRNMTF and demonstrate
that the objective function in Equation (52) is monotonically decreasing under the iterative
update rules (58)–(61).

Definition 2. If the following conditions proposed by Shang et al. [40] are satisfied, that is,
GT(x, x′) ≥ FT(x), GT(x, x) = FT(x), and GT(x, x′) is an auxiliary function of FT(x), then
for iteration (t + 1), the update rule is as follows:

xt+1 = argmin
x

GT
(

x, xt) (62)

Thus, it can be proven that FT
(
xt+1) ≤ GT

(
xt+1, xt) ≤ GT(xt, xt) = FT(xt) converges.

Lemma 3.

T
(

vij, vt
ij

)
= FTij

(
vt

ij

)
+ FT′ij

(
vt

ij

)(
vij − vt

ij

)
+

(
αDSV + VRTUTUR + βV

)
vt

ij

(
vij − vt

ij

)2
(63)

The above equation is an auxiliary function for FTij
(
vij
)
, where FT(V) =∥∥TX−URVT

∥∥2
F + αTr

(
VT LsV

)
+ β

(
VTV − I

)
.

Proof. First, the first-order derivative of FTij
(
vij
)

is FT′ij(V) = (2αLsV − 2XTTTUR+
2VRTUTUR + 2βV)ij, and the second-order derivative of FTij

(
vij
)

is FT′′ij (V) = 2α(Ls)ii +

2
(

RTUTUR
)

jj + 2β.

Thus, we can rewrite FTij
(
vij
)

in the following Taylor series form:

FT
(
vij
)
= FTij

(
vt

ij

)
+ FT′ij

(
vt

ij

)(
vij − vt

ij

)
+

[
α(Ls)ii +

(
RTUTUR

)
jj
+ β

](
vij − vt

ij

)2
(64)

Given 
(
VRTUTUR

)
ij = ∑k

r=1 vt
ir
(

RTUTUR
)

rj ≥ vt
ir
(

RTUTUR
)

ii
β = β

α
(

DSv
)

ij = α∑n
r=1 DS

irvt
rj ≥ α

(
Ds

ii − ws
ii
)
st

ij = α(LS)iiv
t
ij

(65)
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By solving Equations (60) and (61) simultaneously, we find that GTij

(
vt+1

ij , vt
ij

)
is a

local minimum of Equation (61), and vt+1
ij is the local minimum point corresponding to this

local minimum.

vt+1
ij = vt

ij −
vt

ijFT′ij
(

vt
ij

)
2(DSV + VRTUTUR + βV)

= vt
ij

(
XTTTUR + αWsV

)
ij

(αDSV + VRTUTUR + βV)
(66)

we can derive that GT
(

vij, vt
ij

)
≥ FT

(
vij
)
. Since GT

(
vij, vt

ij

)
is an auxiliary function of

FTij
(
vij
)
, FTij

(
vij
)

is monotonically decreasing.
In the same method, we can prove that under the iterative update rule (35), FTij

(
tij
)
,

and FTij
(
rij
)

are monotonically decreasing. □

Lemma 4 ([41]).

∑m
i=1

∥∥∥gt+1
i

∥∥∥1/2

2
−

∥∥∥gt+1
i

∥∥∥2

2

4
∥∥gt

i

∥∥3/2
2

 ≤∑m
i=1

(∥∥gt
i
∥∥1/2

2 −
∥∥gt

i

∥∥2
2

4
∥∥gt

i

∥∥3/2
2

)
(67)

According to Lemma 4, we have

∑m
i=1

∥∥∥ut+1
i

∥∥∥1/2

2
−

∥∥∥ut+1
i

∥∥∥2

2

4
∥∥ut

i

∥∥3/2
2

 ≤∑m
i=1

(∥∥ut
i
∥∥1/2

2 −
∥∥ut

i

∥∥2
2

4
∥∥ut

i

∥∥3/2
2

)
(68)

To solve for Ut+1, Vt+1, Tt+1, and Rt+1, we set Q to Qt in the i-th generation. We define
the following function:

LT(U, V, T, R) = λ
[
Tr
(

VTLsV
)
+ Tr

(
UTLwU

)]
+ Tr

(
TXXTTT

)
− 2Tr

(
XTTTURVT

)
+

Tr
(

VRTUTURVT
)
+ β

[
Tr
(

UTU− I
)
− Tr

(
VTV− I

)]
(69)

Since ∥U∥1/2
2,1/2=∑m

i=1∥ui∥1/2
2 , we obtain the following inequality:

LTt+1 + θ∑m
i=1
∥ut+1

i ∥
2
2

4∥ut
i∥

3/2
2

= LTt+1 + θ
∥∥∥Ut+1

∥∥∥1/2

2,1/2
+ θ∑m

i=1

(
∥ut+1

i ∥
2
2

4∥ut
i∥

3/2
2

−
∥∥∥ut+1

i

∥∥∥1/2

2

)
≤ LTt

+θ∑m
i=1
∥ut

i∥
2
2

4∥ut
i∥

3
2
2

=LTt + θ
∥∥Ut∥∥ 1

2
2,1/2 + θ∑m

i=1

(
∥ut

i∥
2
2

4∥ut
i∥

3/2
2

−
∥∥ut

i

∥∥1/2
2

) (70)

Combining inequalities (67) and (70), we obtain the following inequality:

LTt+1 + θ
∥∥∥Ut+1

∥∥∥1/2

2,1/2
≤ LTt + θ

∥∥Ut∥∥1/2
2,1/2 (71)

Thus, FTij
(
uij
)

is monotonically decreasing. Based on the above analysis, we can
conclude that the objective function (52) of SFLRNMTF is monotonically decreasing under
the update rules in Equations (39), (43), and (58)–(61).

5. Experiments and Analysis

In this subsection, to verify the efficiency of the proposed methods (SFLRNMF and
SFLRNMTF), we conducted numerical experiments on four datasets (COIL20, JAFFE,
UMIST, and YaleB32) to evaluate their robustness, sensitivity, and convergence. We com-
pared the clustering performance with eight algorithms, including PCA [8], NMF [15,16],
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GNMF [22], DNMF [23], DSNMF-LDC [42], NMFAN [30], LOSDNMF [27], EWNMF [43],
SGLNMF [26], and SDGNMF-BO [25].

All numerical experiments were conducted on a PC with Windows 10 operating
system, a CPU of 3.40 GHz, and 8GB of memory, using the Matlab 2021a platform. The
specific characteristics of these datasets are shown in Table 2.

Table 2. Benchmark dataset.

Datasets Samples Dimensions Classes Type

COIL-20 1440 1024 20 Object
JAFFE 213 1024 10 Face
UMIST 575 1024 20 Face
YaleB 2414 1024 38 Face

5.1. Datasets

(1) COIL-20 Dataset: The COIL-20 dataset was developed by Columbia University
and contains images of 20 different real objects. The dataset comprises a total of
1,440 images.

(2) JAFFE Dataset: This dataset involves Japanese female facial expressions from ten
female volunteers, with each category containing seven facial expressions. Each facial
emotion of each volunteer was photographed two to four times, resulting in a total of
213 images.

(3) UMIST Dataset: This dataset was constructed by the University of Manchester Insti-
tute of Science and Technology (UMIST) and includes facial images of 20 individuals
with varying poses, races, genders, and appearances. The dataset contains a total of
575 images.

(4) YaleB Dataset: This dataset contains 2414 frontal face images taken under controlled
lighting conditions in a laboratory, representing 38 subjects. Each image was man-
ually cropped to a 32 × 32 pixel grayscale image and then converted into a 1024-
dimensional vector.

5.2. Parameter Setting

In this section, to ensure fairness, we employ k-means as the clustering method to
compare the clustering performance of SFLRNMF, SFLRNMTF, and eight other algorithms
across four datasets. For our SFLRNMF and SFLRNMTF models, the primary parameters
involve the dual Laplacian graph rank constraint parameter α, the sparsity parameter θ,
and the orthogonality constraint parameter β. The range for all regularization parameters is
set within

{
10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104, 105, 106}. The maximum

number of iterations is set to 200, and the best average result from 10 experiments is
considered the final clustering result. For all graph-based methods, the number of nearest
neighbors k is fixed at five. For all semi-supervised NMF methods, in each dataset, 20%
of the data points from each category are randomly selected as labeled samples, and
these points are used to construct the label constraint matrix A. Meanwhile, to verify the
performance of our proposed algorithms on different classification metrics, we randomly
select the number of clusters c within the range of 2 to 10 for clustering experiments on the
Jaffe and YaleB datasets. For clustering experiments on the COIL20 and UMIST datasets,
the range for the number of clusters c is set from 10 to 20.

Furthermore, due to the multitude of algorithms compared, to enhance the clarity
of reading for the readers, in the clustering experiments, the names of all NMF variant
algorithms have been abbreviated as follows: GNMF is abbreviated as G, DSNMF-LDC as
LDC, NMFAN as AN, DNMF as D, LOSDNMF as LOSD, EWNMF as EW, SGLNMF as SGL,
SDGNMF-BO as SDG, SFLRNMF as SFLR, and SFLRNMTF as SFLRT. This treatment helps
in making the understanding and comparison of each algorithm clearer to the readers.
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5.3. Clustering Performance

Tables 3–10 show the clustering results in terms of ACC and NMI values for the four
datasets. The results in bold represent the optimal results. The corresponding clustering
results are shown in Figures 2–9.

Table 3. ACC results for clustering of SFLRNMF, SFLRNMTF and ten other algorithms on the
JAFFE dataset.

c PCA NMF G LDC AN D LOSD EW SGL SDG SFLR SFLRT

2 99.10 98.58 99.02 100 99.01 100 100 100 100 99.15 100 100
3 97.78 93.32 98.15 100 98.19 98.02 98.29 97.18 98.89 98.96 99.04 99.65
4 95.73 93.25 96.32 99.03 95.93 97.31 98.72 95.55 98.60 97.86 98.29 98.36
5 93.66 92.18 96.14 96.85 97.17 96.39 96.22 95.38 97.20 97.93 97.08 98.04
6 93.24 91.26 92.45 94.49 94.73 93.42 95.63 93.34 94.63 96.82 97.14 98.15
7 92.31 89.32 95.22 96.78 95.93 93.19 95.58 92.47 94.35 95.46 96.58 97.72
8 90.42 85.15 90.54 92.23 92.18 91.58 94.59 89.54 93.36 94.00 96.55 97.31
9 88.32 84.58 90.27 91.97 93.02 91.45 93.87 88.92 94.17 94.79 95.52 97.26

10 84.93 83.02 90.19 90.05 90.52 90.55 92.05 88.50 93.05 92.16 95.31 96.97
Avg. 92.83 90.07 94.26 95.71 95.19 94.66 96.11 93.43 96.03 96.35 97.28 98.16

Table 4. NMI results for clustering of SFLRNMF, SFLRNMTF and ten other algorithms on the
JAFFE dataset.

c PCA NMF G LDC AN D LOSD EW SGL SDG SFLR SFLRT

2 95.62 92.07 90.18 100 95.79 100 100 100 100 96.21 100 100
3 93.02 89.14 94.21 97.25 95.12 94.56 95.02 91.89 96.82 97.85 97.01 99.06
4 91.51 87.56 91.36 98.13 88.65 93.75 96.68 90.10 96.46 94.71 96.14 96.11
5 89.79 86.28 93.44 95.79 93.63 91.45 92.29 90.01 94.23 95.44 95.09 96.03
6 89.13 84.19 86.56 92.15 94.46 89.25 92.23 90.90 90.34 94.16 94.55 96.09
7 89.49 83.37 91.00 95.10 95.44 91.46 92.15 88.46 90.51 92.12 95.41 96.05
8 87.89 80.46 89.01 94.02 93.68 90.35 93.03 86.12 91.00 93.10 95.33 96.05
9 86.09 81.55 90.06 91.53 95.11 92.89 91.69 86.51 92.12 93.06 94.59 96.02

10 83.83 80.31 88.09 92.23 93.75 90.71 90.69 85.48 92.45 91.78 94.92 95.82
Avg. 89.60 85.00 90.43 95.13 93.96 92.71 93.75 89.94 93.77 94.27 95.89 96.80

Table 5. ACC results for clustering of SFLRNMF, SFLRNMTF and ten other algorithms on the
COIL20 dataset.

c PCA NMF G LDC AN D LOSD EW SGL SDG SFLR SFLRT

10 77.14 71.24 86.27 91.93 73.96 87.85 89.56 73.46 85.65 88.76 96.04 94.57
11 74.68 68.13 83.80 88.06 68.89 87.88 86.62 71.07 85.43 85.77 95.29 95.51
12 74.07 64.89 83.51 88.91 69.13 86.23 84.25 70.85 85.13 85.93 93.19 94.39
13 74.07 71.95 81.09 87.99 68.09 82.50 83.79 69.65 83.44 87.04 92.71 95.09
14 73.82 69.23 82.45 83.54 70.15 82.41 81.49 69.41 82.89 83.62 94.02 94.15
15 72.06 66.69 82.15 83.08 67.45 83.39 81.43 69.28 80.90 82.92 93.76 90.34
16 72.93 65.55 79.53 85.59 65.76 83.72 81.05 67.04 79.90 81.88 89.08 88.15
17 71.16 65.15 78.91 82.12 64.39 80.57 80.90 65.95 78.99 81.32 88.24 88.82
18 71.13 63.11 82.20 82.09 66.93 81.06 79.47 65.52 81.62 80.76 86.38 88.34
19 70.91 64.76 80.13 77.01 65.21 79.50 79.33 64.95 78.44 79.35 84.67 88.11
20 68.78 64.32 79.69 77.98 65.35 81.83 78.61 64.87 79.09 79.51 86.04 87.75

Avg. 72.80 66.82 81.79 84.39 67.76 83.36 82.41 68.37 81.95 83.35 90.86 91.38
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Table 6. NMI results for clustering of SFLRNMF, SFLRNMTF and ten other algorithms on the
COIL20 dataset.

c PCA NMF G LDC AN D LOSD EW SGL SDG SFLR SFLRT

10 80.38 72.15 88.09 92.79 75.89 92.61 94.12 75.71 89.58 92.27 97.89 96.14
11 78.72 71.36 83.95 92.31 72.25 93.74 89.98 74.50 86.96 87.62 97.71 97.52
12 78.01 68.45 83.34 91.79 73.16 91.55 88.88 73.24 87.99 90.40 96.25 98.28
13 78.87 75.38 81.29 92.55 74.36 87.95 90.76 74.19 89.12 91.64 95.93 98.39
14 79.67 75.06 82.16 88.74 77.42 87.90 88.05 74.18 89.82 89.36 95.05 97.28
15 78.81 73.58 82.59 89.40 75.15 89.67 89.61 74.54 88.17 88.69 95.12 94.43
16 78.65 73.42 88.43 87.42 73.27 89.91 90.12 74.71 87.45 88.61 93.23 94.29
17 78.67 73.19 87.32 89.89 73.19 88.91 89.69 72.56 87.26 88.67 95.36 95.71
18 78.03 73.31 89.95 89.09 74.32 89.30 88.40 73.59 87.43 88.24 95.15 95.08
19 78.71 73.42 88.46 86.85 74.25 88.82 88.89 72.88 87.98 88.65 93.23 94.21
20 68.78 74.55 89.79 86.98 75.65 89.76 89.09 72.95 88.10 88.55 95.42 94.15

Avg. 77.94 73.08 85.94 89.80 74.45 90.01 89.78 73.91 88.17 89.34 95.49 95.95

Table 7. ACC results for clustering of SFLRNMF, SFLRNMTF and ten other algorithms on the
UMIST dataset.

c PCA NMF G LDC AN D LOSD EW SGL SDG SFLR SFLRT

10 53.49 48.95 65.55 75.19 50.91 66.09 69.25 50.36 67.97 68.40 77.12 78.06
11 52.37 48.46 64.53 72.25 50.85 65.67 68.30 46.97 66.49 65.90 77.12 78.19
12 54.10 47.31 63.71 71.34 47.99 65.78 64.88 45.89 62.19 63.76 75.28 77.21
13 50.11 47.98 60.43 70.16 47.03 60.96 63.56 46.07 62.15 63.49 74.19 77.16
14 49.13 45.79 60.55 69.01 45.53 61.52 62.86 44.93 61.36 64.15 75.27 75.63
15 48.26 44.01 59.29 68.36 44.57 59.91 61.25 45.14 61.96 61.93 74.29 75.27
16 46.74 42.25 59.46 69.16 44.48 60.22 61.07 44.16 58.09 62.00 76.06 75.19
17 45.84 41.46 60.39 69.09 43.19 60.40 60.01 42.79 59.60 62.13 73.01 74.46
18 46.12 41.29 59.34 66.14 43.24 59.52 59.23 42.46 57.69 63.24 72.53 74.25
19 44.90 41.35 59.48 62.23 43.35 59.78 59.09 41.09 56.67 59.17 72.11 74.21
20 44.21 41.59 58.98 59.38 42.77 59.10 59.70 41.23 57.41 59.65 71.14 69.09

Avg. 48.66 44.59 61.16 68.39 45.81 61.72 62.56 44.64 61.05 63.07 74.37 75.34

Table 8. NMI results for clustering of SFLRNMF, SFLRNMTF and ten other algorithms on the
UMIST dataset.

c PCA NMF G LDC AN D LOSD EW SGL SDG SFLR SFLRT

10 65.89 56.79 76.41 83.01 60.91 76.26 78.88 59.52 78.34 77.25 86.01 84.09
11 66.12 59.12 76.47 84.78 60.96 77.35 78.48 57.79 77.69 76.63 85.23 87.27
12 67.29 58.18 75.23 82.46 57.89 78.70 75.43 57.56 76.21 75.96 85.04 85.18
13 65.49 57.16 74.88 82.54 60.71 75.11 76.23 60.03 73.78 76.27 84.09 83.41
14 66.33 58.59 75.96 81.78 59.08 74.29 76.37 58.69 76.82 76.33 83.18 84.05
15 66.14 58.78 75.89 82.13 59.14 74.90 76.13 59.00 76.26 75.95 86.33 85.19
16 66.05 58.93 74.65 84.06 61.78 76.57 76.07 58.74 73.80 75.95 84.52 86.79
17 65.48 58.95 76.43 83.25 59.16 76.72 76.02 58.60 75.04 75.63 84.45 85.14
18 66.02 58.46 75.29 82.03 61.25 74.53 75.96 59.29 74.32 77.24 85.04 83.21
19 65.40 58.29 75.13 80.79 60.29 75.12 75.61 58.19 73.02 75.93 85.13 83.13
20 65.50 58.01 75.59 79.15 60.37 75.07 75.91 59.23 74.46 76.08 84.18 81.16

Avg. 65.97 58.30 75.63 82.36 60.14 75.88 76.46 58.79 75.43 76.29 84.84 84.42
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Table 9. ACC results for clustering of SFLRNMF, SFLRNMTF and ten other algorithms on the
YaleB dataset.

c PCA NMF G LDC AN D LOSD EW SGL SDG SFLR SFLRT

2 52.52 51.65 79.13 79.53 58.50 80.14 86.36 52.87 81.72 73.82 91.64 88.39
3 37.51 36.71 56.82 75.27 43.12 65.48 60.53 36.99 67.57 59.06 78.56 78.66
4 29.54 27.80 54.08 57.70 34.76 54.42 58.44 29.78 61.05 57.36 69.56 72.00
5 26.26 24.04 47.69 55.06 30.42 51.87 51.68 26.51 53.50 57.67 61.04 67.88
6 22.73 20.33 46.65 47.44 26.86 45.87 44.62 25.10 51.74 48.45 59.47 64.78
7 21.27 18.62 42.93 44.67 24.38 37.30 41.74 25.23 46.15 45.52 59.42 48.95
8 20.98 18.49 41.70 43.63 22.53 36.00 39.54 23.43 47.37 42.38 56.20 45.87
9 18.49 18.15 39.62 40.52 21.65 34.62 35.16 22.15 44.81 42.26 54.09 55.48

10 17.23 17.53 39.84 21.74 19.98 31.25 33.66 22.05 42.54 41.66 55.24 49.43
Avg. 27.39 25.92 49.83 51.73 31.36 48.55 50.19 29.35 55.16 52.02 65.02 63.49

Table 10. NMI results for clustering of SFLRNMF, SFLRNMTF and ten other algorithms on the
YaleB dataset.

c PCA NMF G LDC AN D LOSD EW SGL SDG SFLR SFLRT

2 0.28 0.11 45.74 38.44 3.65 44.04 63.50 0.28 45.55 41.19 81.56 81.01
3 0.84 0.47 27.12 44.85 3.73 37.83 32.84 0.91 41.32 34.37 64.41 67.11
4 1.50 0.67 36.88 37.59 4.38 23.81 32.05 1.15 44.39 45.47 58.47 58.95
5 4.11 2.30 31.64 43.57 5.04 40.55 40.12 3.76 43.81 48.22 50.24 57.48
6 3.80 1.15 39.13 27.40 5.79 39.72 36.77 7.66 42.18 39.26 55.08 59.01
7 6.27 2.60 36.46 34.78 6.31 29.28 36.71 11.80 42.73 41.85 58.38 45.99
8 7.38 3.93 36.03 41.86 6.33 34.72 36.54 11.86 45.79 39.47 53.95 40.83
9 7.62 6.93 39.83 33.01 7.18 34.19 35.67 15.81 46.26 40.03 54.08 54.91

10 7.10 8.49 41.06 15.59 7.78 31.72 35.50 17.59 42.89 41.14 53.45 48.54
Avg. 4.32 2.96 37.10 35.23 5.58 35.10 38.86 7.87 43.88 41.22 58.85 57.09
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Figure 7. Clustering NMI on the dataset UMIST.
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Tables 2 and 3, along with Figures 2 and 3, display the clustering results on the JAFFE
dataset. As shown, some algorithms achieved 100% in both ACC and NMI when the
number of clusters was set to two. However, as the number of clusters increased, our
algorithms, SFLRNMF and SFLRNMTF, consistently performed well across most cluster-
ing settings, achieving average accuracy rates (ACC) of 97.28% and 95.89% and average
Normalized Mutual Information (NMI) of 98.16% and 96.80%, respectively. Compared
to the lowest-performing NMF algorithm, SFLR and SFLRT showed an average increase
in accuracy of 7.21% and 8.09% and in NMI of 10.89% and 11.8%, respectively. These
results demonstrate that our methods have a significant advantage in processing facial
recognition images.

Tables 4 and 5, along with Figures 4 and 5, present the clustering results on the COIL20
dataset. These data clearly show that, compared to ten other benchmark algorithms,
our algorithms achieved satisfactory results. Specifically, in terms of average ACC scores,
DSNMF-LDC’s scores are second only to ours, and in terms of average NMI scores, DNMF’s
scores also rank just below ours. More precisely, our SFLRNMF and SFLRNMTF algorithms
exceed the average ACC of DSNMF-LDC by 6.47% and 6.99%, respectively, and surpass
DNMF’s average NMI by 5.48% and 5.94%, respectively. Moreover, as observed from
Figures 4 and 5, regardless of the number of clusters, the highest ACC and NMI scores
consistently appear in our two algorithms. These results amply demonstrate the superiority
and stability of our algorithms.

The clustering results on the UMIST dataset are shown in Tables 6 and 7, as well
as Figures 4 and 5. According to Tables 6 and 7, it can be observed that in terms of
ACC, the SFLRNMTF algorithm generally performs the best among the majority of the
clustering settings, followed by the SFLRNMF algorithm. In terms of NMI, the SFLRNMTF
algorithm also exhibits high performance, with an average score of 84.42%, while the
average score for the SFLRNMF algorithm is 84.84%. Compared to other algorithms, such
as the poorest performing NMF and the best performing DSNMF-LDC, our SFLRNMTF
algorithm’s average ACC is higher by 30.75% and 6.95%, respectively. In terms of NMI,
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the average NMI of the SFLRNMF algorithm is higher than that of NMF and DSNMF-
LDC by 26.54% and 2.48%, respectively. It is noteworthy that although the average ACC
score of SFLRNMT is higher than that of SFLRNMF, its average NMI score is lower than
that of SFLRNMF. The reason for this phenomenon is that NMI is actually a measure
of the joint probability distribution across different classes, which means it calculates
by comparing the mutual information and entropy between generated labels and true
labels. Therefore, the more points that are misclassified into the same class, the higher the
NMI score at the same ACC value. This explains why SFLRNMTF has a higher average
ACC score than SFLRNMF, yet a slightly lower average NMI score. Furthermore, as
depicted in Figures 4 and 5, regardless of the number of clusters, the ACC and NMI curves
of SFLRNMF and SFLRNMTF consistently remain above those of the other algorithms
compared. These results indicate that the SFLRNMF and SFLRNMTF algorithms proposed
by us not only produce significant effects but also demonstrate strong stability when
processing facial recognition images in the UMIST dataset.

Similarly, the clustering performance on the YaleB dataset is presented in Tables 8 and 9,
as well as in Figures 8 and 9. In terms of accuracy, the SFLRNMF algorithm was found to
perform best in most clustering setups, especially when the number of clusters was set to 2,
achieving a high score of 91.64%, significantly surpassing the other algorithms. On average,
an ACC score of 65.02% was obtained by SFLRNMF, with SFLRNMF closely following at an
average score of 63.49%. In contrast, the worst performing algorithm was NMF, which only
achieved an average ACC score of 27.39%. In terms of Normalized Mutual Information
(NMI), high scores were also demonstrated by SFLRNMTF, particularly when the number
of clusters was 2, reaching an NMI score of 81.56%. Overall, the average NMI score for
SFLRNMTF was 58.85%, slightly higher than that of SFLRNMF, which was 57.09%. Com-
pared to LOSDNMF, which exhibited poorer clustering performance, both SFLRNMF and
SFLRNMTF achieved higher scores in ACC and NMI across various numbers of clusters.
Furthermore, as observed in Figures 8 and 9, although the ACC and NMI curves for all
algorithms showed a downward trend with an increasing number of clusters, the curves
for SFLRNMF and SFLRNMTF consistently remained above those of the other comparative
algorithms. These results indicate that the proposed SFLRNMF and SFLRNMTF algorithms
not only produce significant effects in handling facial recognition images from the YaleB
dataset but also exhibit stability across various cluster number settings. Particularly, the
SFLRNMF algorithm showed the most stable performance among all compared algorithms.

Similarly, the clustering performance on the YaleB dataset is demonstrated in
Tables 8 and 9, as well as Figures 8 and 9. In terms of accuracy, the SFLRNMTF algo-
rithm performs best under most clustering counts. For accuracy (ACC), the average ACC
score of SFLRNMF is 65.02%, followed closely by SFLRNMTF with an average score of
63.49%. In contrast, the worst performing algorithm is NMF, with an average ACC score of
only 27.39%. In terms of Normalized Mutual Information (NMI), SFLRNMF also shows
higher scores, particularly when the cluster count is 2, reaching an NMI score of 81.56%.
Overall, the average NMI score of SFLRNMF is 58.85%, slightly higher than that of SFLRN-
MTF at 57.09%. Compared to LOSDNMF, which has poorer clustering performance, both
SFLRNMF and SFLRNMTF outperform in both ACC and NMI scores across various num-
bers of clusters. Furthermore, as shown in Figures 8 and 9, although the ACC and NMI
curves for all algorithms tend to decline as the number of clusters increases, the curves
for SFLRNMF and SFLRNMTF consistently remain above those of the other comparative
algorithms. These results indicate that the proposed SFLRNMF and SFLRNMTF algorithms
not only produce significant effects in handling facial recognition images from the YaleB
dataset but also exhibit stability across different cluster settings. Notably, the SFLRNMF
algorithm shows the most stable performance among all compared algorithms.

5.4. Visualization Comparison

Based on the clustering comparison experiments mentioned above, we plan to delve
deeper into the superiority of our two algorithms through their subspace learning capa-
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bilities. For a more intuitive and effective comparison, we selected 10 categories from
four test datasets as the input data for the experiments (since too many data categories
might create visual clutter that could hinder analysis, while too few categories might not
adequately highlight the subspace learning performance of different algorithms). The
visual comparison results are displayed in Figures 10 and 11. Note that the subgraphs
containing category labels do not obscure any comparative information.
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Figures 10 and 11 demonstrate that, on the COIL-20 and UMIST datasets, our 
SFRLNMF and SFRLNMTF algorithms perform excellently, being capable of distinguish-
ing data samples more clearly. Particularly in the visual comparison on the COIL-20 da-
taset, both methods proposed by us are demonstrated to successfully and clearly separate 
the samples from other categories. This indicates that our methods can efficiently learn 
low-dimensional subspace representations. Not only does this experiment validate the re-
liability of the aforementioned clustering experiments, but it also confirms the contribu-
tions of our two methods. 
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Figure 10. Two-dimensional representations of UMIST dataset using t-SNE on the results of
different methods.

Figures 10 and 11 demonstrate that, on the COIL-20 and UMIST datasets, our SFRL-
NMF and SFRLNMTF algorithms perform excellently, being capable of distinguishing
data samples more clearly. Particularly in the visual comparison on the COIL-20 dataset,
both methods proposed by us are demonstrated to successfully and clearly separate the
samples from other categories. This indicates that our methods can efficiently learn low-
dimensional subspace representations. Not only does this experiment validate the reliability
of the aforementioned clustering experiments, but it also confirms the contributions of our
two methods.
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Figure 11. Two-dimensional representations of COIL20 dataset using t-SNE on the results of
different methods.

5.5. Parameter Sensitivity Analysis

In this section, we explored the sensitivity of parameters for our method on the JAFFE
dataset. As seen from the SFRLNMF objective function in Equation (27), three fundamental
parameters are involved: the orthogonality constraint parameter β, the sparsity parameter
θ, and the graph regularization parameter α. These parameters were selected from the
range [10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104]. The comparison results for ACC
and NMI are displayed in three-dimensional bar charts in Figure 12a,b, Figure 13a,b and
Figure 14a,b.

From Figure 12a,b, it can be observed that with the variation in the values of parameters
α and β, the values of ACC and NMI decrease, indicating that the SFLRNMF is sensitive
to the parameters α and β on the JAFFE dataset, particularly evident when θ equals 1000.
Specifically, when α is selected from [10−2, 10−1, 102, 103, 104], the scores of these two
metrics are slightly higher.
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Figure 12. The ACC and NMI of SFLRNMF with different α and β on JAFFE.
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Figure 13. The ACC and NMI of SFLRNMF with different α and θ on JAFFE.
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Similarly, we fixed β at 1000 and varied θ and α to compute the scores for ACC and
NMI. The corresponding 3D histograms for ACC and NMI are shown in Figure 13a,b. From
Figure 13a,b, it is evident that the overall scores for ACC and NMI on the JAFFE dataset are
satisfactory, particularly when θ is chosen from the range [10−4, 10−3, 10−2, 10−1, 100, 101],
where the scores are highest. Additionally, when θ is within the range [10−4, 10−3, 10−2,
10−1, 100, 101, 102, 103, 104], regardless of how the value of α changes within the given
range, the scores for ACC and NMI remain high, indicating that the parameter α has a
minimal impact on the clustering results. In this scenario, it can be considered that the
SFLRNMF algorithm demonstrates greater robustness when β is fixed.

To explore the sensitivity of other parameters in the SFLRNMF algorithm, a similar
analysis of parameter sensitivity was conducted with the α parameter fixed, as illustrated
in Figure 14.
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According to Figure 14a,b, overall, the scores of the ACC and NMI metrics vary with
changes in these two parameters. Particularly, the best results are obtained when the values
of parameters β and θ range from [103,104]. Therefore, in this case, the SFLRNMF is more
sensitive to parameters β and θ.

Next, we also conducted a parameter sensitivity analysis for SFLRNMTF with respect
to the parameters α, β, and θ, since SFLRNMTF is an improved version of SFLRNMF and
thus they share the same parameters. When α, β, and θ were fixed at 1000, respectively,
the corresponding 3D histograms for the ACC and NMI scores on the JAFFE dataset are
shown in Figures 15–17, while the ranges for the other two parameters remained set at
10−4,10−3,10−2,10−1,100,101,102,103,104.
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5.6. Convergence Analysis 
Based on the mathematical derivations of the convergence of two algorithms dis-

cussed in Sections 3.7 and 4.3 of the paper, it was verified that these two algorithms are 
highly efficient in addressing the problem of local optima. To further assess the conver-
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From these figures, it can be concluded that compared to parameter θ, parameter β
shows higher sensitivity to the performance of SFLRNMTF. When parameter α is set to
1000, the appropriate range for β is [103,104]. When β is 1000 and θ is within the range
[10−4,10−3,10−2,10−1,100], better performance is achieved by the algorithm. Additionally,
regardless of the values of θ and β, the overall variation in ACC and NMI remains almost
constant, indicating that when parameter α is fixed at 1000, both θ and β exhibit robustness
in the performance of SFLRNMTF. However, in Figures 16 and 17, it can be seen that the
variations in ACC and NMI are uneven and unstable, indicating that parameters θ and β
exhibit higher sensitivity to the performance of SFLRNMTF. When parameter α is set to
1000, the clustering performance of the SFLRNMTF algorithm is optimal and remains stable
under other conditions. Additionally, it is evident that under these circumstances, the
optimal ranges for θ and β are [10−4, 10−3, 10−2, 10−1, 100] and [10−2, 10−1], respectively.

5.6. Convergence Analysis

Based on the mathematical derivations of the convergence of two algorithms discussed
in Sections 3.7 and 4.3 of the paper, it was verified that these two algorithms are highly
efficient in addressing the problem of local optima. To further assess the convergence
of the SFLRNMF and SFLRNMTF algorithms, experiments were conducted on the four
datasets discussed in this paper. In the experiments, the number of categories was set to
the maximum number of categories for each dataset, and the convergence curves of our
model on these four datasets were plotted, as shown in Figures 18 and 19. In these figures,
the y-axis represents the value of the objective function, while the x-axis represents the
number of iterations. The experimental results demonstrated the superior performance of
our algorithms on these datasets.
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Figure 18. Convergence curves of the SFLRNMF algorithm on four datasets.
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Figure 19. Convergence curves of the SFLRNMTF algorithm on four datasets.

From Figure 18a–d, it can be seen that the SFLRNMF algorithm demonstrates ex-
tremely fast convergence on four datasets (JAFFE, COIL20, UMIST, and YaleB). The ob-
jective function value drops rapidly and stabilizes within less than 10 iterations. This
consistent, fast convergence indicates that SFLRNMF can efficiently find a local optimal
solution across various datasets, highlighting the robustness and adaptability of the algo-
rithm. In contrast, Figure 19 shows the convergence curves of the SFLRNMTF algorithm.
Observing Figure 19b–d, it can be seen that the SFLRNMTF algorithm also exhibits a rela-
tively fast convergence rate on the COIL20, UMIST, and YaleB datasets, with the objective
function value stabilizing within 10 iterations, indicating high optimization efficiency on
these datasets. However, in Figure 19a, the convergence rate of SFLRNMTF is relatively
slower on the JAFFE dataset. Although the objective function value decreases significantly
in the first 10 iterations, it takes approximately 40 iterations to fully converge.

In summary, Figures 18 and 19 indicate that both algorithms exhibit favorable con-
vergence performance across different datasets. Overall, SFLRNMF and SFLRNMTF both
converge within a relatively small number of iterations, confirming their stability and effi-
ciency on various datasets. Notably, the SFLRNMF algorithm demonstrates a consistently
rapid convergence across all datasets.

5.7. Calculation Time Analysis

In this section, we analyze the computation time by comparing the duration required
for clustering experiments conducted on four datasets, in order to more clearly understand
the specific impacts of different data dimensions and dataset sizes on computation time.
These datasets include JAFFE, COIL20, UMIST, and YaleB. During the experiments, the
number of clusters was set to the maximum number of categories each dataset contains.
To ensure the stability and reliability of the results, ten independent experiments were
conducted on each dataset, and the average execution time of these experiments was
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calculated. The results are summarized in Table 11, which details the average computation
time for each dataset under various clustering settings.

Table 11. Comparison of computation times of different algorithms on four datasets (s).

Datasets PCA NMF G LDC AN D LOSD EW SGL SDG SFLR SFLRT

JAFFE 0.02 0.11 0.12 0.45 0.92 2.86 1.71 0.84 2.58 3.72 0.87 4.59
COIL20 0.23 0.99 1.05 4.51 23.90 88.71 93.62 6.12 71.73 60.05 3.88 3.61
UMIST 0.08 0.40 0.42 1.12 4.41 16.82 7.61 2.39 13.90 12.84 2.66 3.40
YaleB 0.37 2.45 2.82 12.59 70.89 178.45 305.21 11.66 213.96 187.89 8.79 20.34

From the data analysis in Table 11, it is observed that, firstly, datasets with larger
dimensions significantly increase runtime, demonstrating that the model’s runtime is no-
tably influenced by the dimensions and size of the data. Secondly, algorithms based on
graph structures have longer computation times compared to non-graph-based algorithms.
This indicates that graph-based algorithms consume a substantial amount of time in con-
structing graphs, especially in high-dimensional datasets, where this difference in time is
more pronounced. In terms of algorithm types, algorithms utilizing dual graph structures
take longer to execute compared to those using a single graph structure. Furthermore,
semi-supervised algorithms (such as LOSDNMF, SGLNMF, SDGNMF-BO) have longer
runtimes compared to unsupervised algorithms. For unsupervised dual graph algorithms
like DNMF, as well as SFLRNMF and SFLRNMTF, the latter two demonstrate superior
performance on high-dimensional datasets. This is primarily due to these algorithms
having faster convergence rates and fewer iterations, significantly enhancing efficiency
when dealing with large-scale or high-dimensional data.

6. Conclusions

In this study, two innovative unsupervised algorithms, SFLRNMF and SFLRNMTF,
are proposed, with the latter being a further improvement of the former. The SFLRNMF
algorithm effectively addresses the issue of inaccurate low-rank matrix approximation by
integrating orthogonality, sparsity, and dual Laplacian rank constraints in non-negative
matrix factorization, significantly enhancing the model’s capability in low-dimensional
representation. Building on this, SFLRNMTF introduces an additional factor R, which
is capable of handling scale differences among the input matrices X, U, and V, further
improving the accuracy of factor decomposition. Moreover, both models are designed with
a learning mechanism to optimize the graph model, enabling the automatic adjustment of
the affinity matrix’s weights to more precisely capture the intrinsic structure of the data.
According to the numerical experiment results, SFLRNMF and SFLRNMTF outperform
several existing mainstream methods on multiple standard datasets, demonstrating a clear
competitive advantage.
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